A novel disease gene for Brugada syndrome: sarcolemmal membrane-associated protein gene mutations impair intracellular trafficking of hNav1.5.
نویسندگان
چکیده
BACKGROUND Mutations in genes including SCN5A encoding the α-subunit of the cardiac sodium channel (hNav1.5) cause Brugada syndrome via altered function of cardiac ion channels, but more than two-thirds of Brugada syndrome remains pathogenetically elusive. T-tubules and sarcoplasmic reticulum are essential in excitation of cardiomyocytes, and sarcolemmal membrane-associated protein (SLMAP) is a protein of unknown function localizing at T-tubules and sarcoplasmic reticulum. METHODS AND RESULTS We analyzed 190 unrelated Brugada syndrome patients for mutations in SLMAP. Two missense mutations, Val269Ile and Glu710Ala, were found in heterozygous state in 2 patients but were not found in healthy individuals. Membrane surface expression of hNav1.5 in the transfected cells was affected by the mutations, and silencing of mutant SLMAP by small interfering RNA rescued the surface expression of hNav1.5. Whole-cell patch-clamp recordings of hNav1.5-expressing cells transfected with mutant SLMAP confirmed the reduced hNav1.5 current. CONCLUSIONS The mutations in SLMAP may cause Brugada syndrome via modulating the intracellular trafficking of hNav1.5 channel.
منابع مشابه
A Novel Missense Mutation in CLCN1 Gene in a Family with Autosomal Recessive Congenital Myotonia
Congenital recessive myotonia is a rare genetic disorder caused by mutations in CLCN1, which codes for the main skeletal muscle chloride channel ClC-1. More than 120 mutations have been found in this gene. The main feature of this disorder is muscle membrane hyperexcitability. Here, we report a 59-year male patient suffering from congenital myotonia. He had transient generalized myotonia, which...
متن کاملRab11 in Disease Progression
Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...
متن کاملCharacterization of N-terminally mutated cardiac Na+ channels associated with long QT syndrome 3 and Brugada syndrome
Mutations in SCN5A, the gene encoding the cardiac voltage-gated Na(+) channel hNav1.5, can result in life-threatening arrhythmias including long QT syndrome 3 (LQT3) and Brugada syndrome (BrS). Numerous mutant hNav1.5 channels have been characterized upon heterologous expression and patch-clamp recordings during the last decade. These studies revealed functionally important regions in hNav1.5 a...
متن کاملNovel Missense Mitochondrial ND4L Gene Mutations in Friedreich's Ataxia
Objective(s) The mitochondrial defects in Friedreich's ataxia have been reported in many researches. Mitochondrial DNA is one of the candidates for defects in mitochondrion, and complex I is the first and one of the largest catalytic complexes of oxidative phosphorylation (OXPHOS) system. Materials and Methods We searched the mitochondrial ND4L gene for mutations by TTGE and sequencing on 30...
متن کاملKlotho Protein,A Biomarker for AKI
Klotho is an anti-aging single-pass membrane protein that is mainly produced in the kidney. The level of soluble klotho decreases with age and the klotho gene is associated with an increased risk of age-related diseases, such as diabetes, skin atrophy, chronic kidney disease, ataxia and cancer. The klotho gene is composed of five exons and encodes a membrane glycoprotein located in the plasma ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation. Arrhythmia and electrophysiology
دوره 5 6 شماره
صفحات -
تاریخ انتشار 2012